首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   761篇
  免费   41篇
  国内免费   78篇
林业   18篇
农学   39篇
基础科学   8篇
  27篇
综合类   183篇
农作物   36篇
水产渔业   16篇
畜牧兽医   176篇
园艺   343篇
植物保护   34篇
  2024年   5篇
  2023年   20篇
  2022年   37篇
  2021年   65篇
  2020年   79篇
  2019年   134篇
  2018年   108篇
  2017年   37篇
  2016年   57篇
  2015年   48篇
  2014年   38篇
  2013年   52篇
  2012年   29篇
  2011年   18篇
  2010年   20篇
  2009年   11篇
  2008年   14篇
  2007年   10篇
  2006年   13篇
  2005年   13篇
  2004年   8篇
  2003年   9篇
  2002年   3篇
  2001年   1篇
  2000年   21篇
  1999年   5篇
  1998年   2篇
  1997年   2篇
  1996年   3篇
  1994年   3篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1985年   1篇
  1962年   1篇
  1956年   4篇
  1955年   1篇
排序方式: 共有880条查询结果,搜索用时 218 毫秒
81.
玉米大斑病菌亲环素基因的克隆及表达规律分析   总被引:1,自引:0,他引:1  
利用简并引物PCR结合RACE技术获得S. turcica中亲环素基因的全长,并通过Real-time PCR技术检测该基因在病菌侵染结构发育过程中的表达模式。结果表明,玉米大斑病菌亲环素基因开放阅读框全长1 125 bp,3′UTR 154 bp,5′UTR 93 bp,编码374个氨基酸,将此基因命名为CyPs1,并将其cDNA序列提交GenBank,获得登录号EU679371.1,Protein ID为ACD62431.1。系统发育树分析显示,CyPs1与玉米小斑病菌(Bipolaris maydis)、蓝莓枯枝病菌(Neofusicoccum parvum)等物种的亲环素同源性可达到90%以上。该基因在病菌分生孢子萌发、附着胞形成及侵染阶段均有表达,至附着胞形成和侵染菌丝形成阶段,转录水平分别升至分生孢子时期的2倍和3倍。  相似文献   
82.
为分析绒山羊皮肤中受Hippo信号通路调控的绒生长候选基因集,本研究选取6只罕山白绒山羊随机分为对照组和褪黑素处理组,每组设3个重复。以自然年为试验周期,每月采集皮肤样本进行RNA测序,使用Bowtie、TopHat、Cufflinks、Cuffmerge、Cuffdiff、Cuffcompare、CPAT和CPC软件分析DE-mRNA和DE-lncRNA,联合PCA分析它们对次级毛囊生长周期的应答,利用WGCNA挖掘调控山羊绒生长的基因模块,GSEA分析候选基因集的生物学功能。结果表明:1)筛选得到组间DE-mRNA 2 024个和DE-lncRNA 329个,它们应答了绒山羊皮肤次级毛囊的生长周期。2)获得有生物学意义的对照组7个和试验组9个基因模块。3)深入分析富集到平衡哺乳动物皮肤生长分化、毛囊形态发生的Hippo信号通路基因模块,揭示了外源褪黑素诱导下调控山羊绒生长候选基因集191个mRNA和49个lncRNA的共表达调控网络关系。4)发现候选基因集与皮肤发育生物学过程(|NES|>1且FDR<25%)、Hippo信号通路(|NES|>1且FDR<25...  相似文献   
83.
轮状病毒(RV)是引起婴幼儿、幼畜禽急性肠胃炎的人畜共患病原,常与其他病原体混合感染,多以呕吐,严重水样腹泻,脱水为临床症状,感染后具有较高病死率,对人类公共卫生以及养殖业造成极大危害。RV病原相关分子模式(PAMP)可被肠上皮细胞(IECs)中一组可遗传的模式识别受体(PRR)识别,通过IECs、先天免疫细胞与RV互作,激活细胞内信号级联,从而迅速诱导炎症和多种抗病毒基因表达。论文就轮状病毒特性、肠道先天免疫等方面进行综述,探讨RV感染宿主IECs后诱导不同抗病毒信号通路,为利用先天免疫途径预防轮状病毒感染提供了一定的参考。  相似文献   
84.
AIM:To investigate the protective effect of ethanol extract from Cortex Albiziae on acute liver injury, and to explore its possible mechanism. METHODS:Acute liver injury in mice was induced by single intraperitoneal injection of 25% carbon tetrachloride (olive oil solubilization). The effective parts of ethanol extract from Cortex Albizziae against acute liver injury were screened. The pathological changes of the liver tissues were examined by pathological sections with HE staining. The activity of total superoxide dismutase (T-SOD) and the content of malondialdehyde (MDA) of the liver tissues were detected, the serum levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were mea-sured by ELISA, and the protein expression levels of NF-κB p65, Bcl-2 and Bax in the liver cells of the mice in each group were determined by Western blot. RESULTS:Compared with model group, the serum levels of AST and ALT in low-dose n-butanol phase of ethanol extract from Cortex Albiziae (AB-L, 4 mg·kg-1·d-1) group and high-dose n-butanol phase of ethanol extract from Cortex Albiziae (AB-H, 8 mg·kg-1·d-1) group were significantly decreased. The necrosis extent and degree of the hepatocytes and infiltration of inflammatory cells were significantly lower than that in model group. Compared with model group, the serum levels of TNF-α and IL-6 in AB-H group and AB-L group were significantly decreased (P<0.05). The protein level of NF-κB p65 in the nuclei of mouse liver cells in AB-H group and AB-L group were also decreased significantly (P<0.05). Compared with model group, the protein expression of Bax was decreased, the protein expression of Bcl-2 was increased, and the Bcl-2/Bax ratio was increased in AB-L group and AB-H group. CONCLUSION:The n-butanol phase of ethanol extract from Cortex Albiziae may protect the liver by reducing the activation of NF-κB p65, inhibiting the excessive release of inflammatory cytokines IL-6 and TNF-α, and decreasing hepatocyte apoptosis via regulating Bcl-2 and Bax expression.  相似文献   
85.
[Objectives]This study aimed to explore the protective effect of Oxalis coriniculata L.on rats with acute liver injury induced by carbon tetrachloride(CCl4)and ...  相似文献   
86.
AIM: To explore the effect of shikonin on rat primary cortical neurons in oxygen-glucose deprivation (OGD)-induced injury model.METHODS: The neurons were pretreated with shikonin at different concentrations (0.02, 0.2, 2 and 20 μmol/L) followed by treatment with OGD. Lactate dehydrogenase (LDH) release assay and fluorescein diacetate/propidium iodide (FDA/PI) double staining were used to detect neuronal viability and apoptosis, and then the optimal concentration of shikonin was determined. LY294002 (PI3K/Akt signaling pathway inhibitor, 1 μmol/L) was added before the addition of shikonin, and the protein level of p-Akt (Ser473) in the neurons was determined by Wes-tern blot. LDH release assay and FDA/PI double staining were also used to detect neuronal viability and apoptosis.RESULTS: A certain concentration (0.2~20 μmol/L) of shikonin increased the viability of impaired neurons (P<0.05) and the protein level of p-Akt (Ser473) in the neurons (P<0.05). The effect of shikonin on neuronal p-Akt (Ser473) levels and the cell death were blocked by LY294002 (P<0.05).CONCLUSION: A certain concentration of shikonin reduces OGD-induced apoptosis of rat primary cortical neurons by activating PI3K/Akt signaling pathway.  相似文献   
87.
AIM: To investigate the role of Toll-like receptor 4 (TLR4) and transient receptor potential channel 6 (TRPC6) signaling pathway in lipopolysaccharide (LPS)-induced nuclear factor-κB (NF-κB) P65 expression and nuclear translocation in airway epithelial cells (16HBE) for supplementing the mechanism for airway inflammation. METHODS: After stimulating the 16HBE cells with LPS at 1 mg/L for 0, 0.5, 2, 6, 12 and 24 h, the expression of NF-κB P65 at mRNA and protein levels in the 16HBE cells were determined by RT-PCR and Western blot respectively, and the nuclear translocation of NF-κB P65 was detected by immunocytochemical staining method. The effects of TLR4 inhibitor CLI-095 at 5 μmol/L and TRPC6 agonist Hyp9 at 10 μmol/L on LPS (1 mg/L)-induced NF-κB P65 expression and nuclear translocation in the 16HBE cells were determined by RT-PCR, Western blot and immunocytochemical staining. RESULTS: LPS increased the mRNA and protein expression of NF-κB P65 and nuclear translocation in the 16HBE cells(P<0.05). TLR4 inhibitor CLI-095 reduced the mRNA and protein expression of NF-κB P65 and nuclear translocation induced by LPS, while Hyp9 enhanced the mRNA and protein expression of NF-κB P65 and nuclear translocation induced by LPS in the 16HBE cells(P<0.05). CONCLUSION: LPS induces the expression and nuclear translocation of NF-κB P65 in the 16HBE cells via TLR4-TRPC6 signaling pathway.  相似文献   
88.
Juvenile hormone (JH) is an insect-specific hormone that regulates molting and metamorphosis. Hence, JH signaling inhibitors (JHSIs) and activators (JHSAs) can be used as effective insect growth regulators (IGRs) for pest management. In our previous study, we established a high-throughput screening (HTS) system for exploration of novel JHSIs and JHSAs using a Bombyx mori cell line (BmN_JF&AR cells) and succeeded in identifying novel JHSIs from a chemical library. Here, we searched for novel JHSAs using this system. The four-step HTS yielded 10 compounds as candidate JHSAs; some of these compounds showed novel basic structures, whereas the others were composed of a 4-phenoxyphenoxymethyl skeleton, the basic structure of several existing JH analogs (pyriproxyfen and fenoxycarb). Topical application of seven compounds to B. mori larvae significantly prolonged the larval period, suggesting that the identified JHSAs may be promising IGRs targeting the JH signaling pathway.  相似文献   
89.
AIM: To explore whether morphine protects oxidative stress-damaged myocardial cells by inhibiting the PERK pathway to reduce endoplasmic reticulum stress and prevent mitochondrial permeability transition pore (mPTP) opening. METHODS: Rat myocardial H9c2 cells were cultured to establish an oxidative stress model, and then randomly divided into control group, H2O2 group, H2O2+morphine group, H2O2+morphine+PERK pathway inhibitor GSK2656157 group, morphine group and GSK2656157 group. Immunohistochemical method was used to detect the effects of morphine on expression of glucose-regulated protein (GRP) 78 and GRP94 induced by oxidative stress. The protein levels of PERK signaling pathway-related molecules were determined by Western blot. Confocal microscopy was used to observe the effects of morphine on mPTP opening and endoplasmic reticulum induced by oxidative stress. Cellular toxicity was detected by lactate dehydrogenase (LDH) kit and cell viability was measured by MTT assay. RESULTS: Compared with control group, GRP78 and GRP94 proteins in H2O2 group were strongly expressed, and the brown-yellow particles were significantly increased, but morphine significantly inhibited this process. Compared with control group, the phosphorylation of PERK was significantly reduced with GSK2656157 treatment at different concentrations, among which 2 μmol/L had the most significant effect (P < 0.05). Oxidative stress significantly increased the protein levels of GRP78, GRP94, p-PERK and CHOP, but significantly decreased p-GSK-3β level. These changes were inhibited by morphine, and the effects of morphine were further enhanced by GSK2656157 (P < 0.05). Compared with control group, oxidative stress significantly reduced the fluorescence intensity of mitochondrial TMRE and ER-Tracker Red. Morphine significantly inhibited this effect even when mitochondrial membrane potential was reduced, mPTP was open, and endoplasmic reticulum was damaged, while GSK2656157 further enhanced the effect of morphine (P < 0.05). Compared with control group, H2O2 significantly increased cellular toxicity and decreased the cell viability. Morphine inhibited this effect and GSK2656157 significantly enhanced the effect of morphine (P < 0.05). CONCLUSION: Morphine protects cardiac H9c2 cells under oxidative condition by inhibiting endoplasmic reticulum stress through PERK pathway and preventing the mPTP opening via GSK-3β inactivation.  相似文献   
90.
AIM: To explore the effect of inositol 1, 4, 5-trisposphate receptor (IP3R) in luteinizing hormone-epidermal growth factor receptor (LH-EGFR)-induced oocyte meiotic resumption. METHODS: Models of mouse cumulus-oocyte complexs (COCs) culture and follicle culture in vitro were generated to study the effects of 2-aminoethyl diphenyl borate (2-APB) and heparin (IP3R specific inhibitors) on LH/EGF-induced oocyte meiotic resumption and EGF-induced cumulus cell expansion. Real-time PCR was used to detect the mRNA expression of cumulus expansion-related factors. The changes of the intracellular calcium level were monitored using Fluo 3-AM, and the cGMP level was measured by ELISA. RESULTS: The inhibitors of IP3R, 2-APB and heparin, dramatically reversed EGF-induced oocyte maturation (P<0.05) and decreased cGMP levels in COCs (P<0.05). In addition, 2-APB and heparin reversed EGF-induced cumulus expansion, and significantly inhibited EGF-induced cumulus expansion-related factor expression (P<0.05). The activation of IP3R increased intracellular calcium level, and the study found that 2-APB and heparin dramatically reversed EGF-induced elevation of calcium level in cumulus cells (P<0.05). Follicular culture in vitro showed that 2-APB and heparin significantly reversed the LH-induced oocyte maturation (P<0.05). CONCLUSION: LH-EGFR signaling pathway increases calcium level in cumulus cells through IP3R, resulting in meiotic resumption.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号